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The multilayer multiconfiguration time-dependent Hartree theory is applied to study the quantum dynamics

of ultrafast electron-transfer reactions in a condensed-phase environment with anharmonic potential functions.
Effects of anharmonicity for both the nuclear degrees of freedom of the environment and the intramolecular

vibrational degrees of freedom are investigated. Whereas the former can in principle be mapped to a fictitious
harmonic bath, the latter cannot be represented in this way and, thus, go beyond the commonly employed
linear response approximation. Numerical examples are presented to illustrate these findings.

I. Introduction favorably with the alternative path integral appro#ctf based
on Feynman-Vernon influence-functional techniqué!

The original MCTDH method is limited to treating a few
tens of degrees of freedom. This is adequate for describing the
dynamics of the spirboson model in a relatively limited

The accurate description of quantum effects for large mo-
lecular systems is a challenging task in theoretical chemical
dynamics. Due to the rapid development in time-resolved

nonlinear spectroscopy techniques, more detailed information . . . o S
on the reaction dynamics of complex molecular systems hasphysmal regime. To simulate quantum dissipative dynamics in

become available in recent years. As a consequence, it has beeft broad_er parameter space, the more versatile multilayer (ML)
realized that in many complex processes, quantum tunne”nggenerahzanon of the MCTDH method has been proven

and coherence effects may play important roles. Such effectsUSeful>** ** This is particularly important for treating doner
cannot be described by purely classical methods, such as, forAcCePtor ET reactions in a complex condensed-phase environ-
example, molecular dynamics simulation. This has stimulated ment in which both the intramolecular \(lbratlonal degrees of
the development of theoretical methods that are capable offréedom of the doneracceptor complex (inner sphere) and the
describing the quantum dynamics in systems with many degreestontinuous distribution of solvent modes (outer sphere) con-
of freedom. According to their different nature, these methods tribute to the overall vibronic dynamics.
can be broadly divided into two major classes: rigorous quantum In most previous studies of ET reactions in the condensed
dynamical methods and semiclassical approaches. The multi-phase, the influence of the nuclear degrees of freedom is
configuration time-dependent Hartree (MCTDH) théofyand, modeled by a bath of harmonic oscillatdP£?-3>which corre-
in particular, its multilayer (ML) generalization, the ML- sponds to a linear response mda@él for the outer sphere
MCTDH theory? are promising examples of the former class. solvent environment and a harmonic approximation for the inner
The feasibility of the MCTDH method has been demonstrated Sphere vibrational modes. This may be justified if the interaction
by many applications to gas-phase reactions of relatively large of the donor-acceptor complex with the environment is evenly
molecule€~12 For reactions in a condensed-phase environment, distributed over many nuclear degrees of freedom. There are,
there is currently no universal rigorous method available that however, many situations in which this is not the case. Examples
is capable of simulating the quantum dynamics for a general include strongly coupled low-frequency intramolecular modes
complex molecular system with arbitrary potential functions. (such as torsional motion) for which the harmonic approximation
However, the MCTDH method has been proven extremely is not appropriate and ET in nonpolar liquids for which the linear
useful for treating certain classes of quantum dynamical response treatment may fail. Even in cases that the linear
processes in large molecular systems in a numerically exact way,response approach is valid and, thus, a mapping to a fictitious
in which a moderate number of degrees of freedom has beenharmonic bath is possible, it may be more convenient to simulate
explicitly included in the dynamical treatmélst.1” An important the guantum dynamics of the ET reaction in the original
example along this line is the system-bath Hamiltonian that anharmonic environment. This is because such a mapping to a
models reactions in the condensed phase, for example, the spin harmonic bath is temperature-dependent, which makes it difficult
boson modéf1? for donor-acceptor electron transfer (ET) to systematically study the dependence of ET dynamics on
processed? The MCTDH method, together with the self- various physical parameters (e.g., temperature, time scale, and
consistent hybrid approact?!22has been shown to compare coupling of the bath, etc.). From a theoretical perspective, it is
also important to develop methods that can directly simulate
T Part of the special issue “Robert E. Wyatt Festschrift”. ET reactions in an anharmonic environment. This not only
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generates benchmark results for developing other approximateTABLE 1: Parameters of the Intramolecular Modes in the
theories that go beyond harmonic approximatioft but also ~ Model Hamiltonian (2.4) for the Spin—Boson Model,
provides a more general framework to test the validity of the E‘ﬁgﬂg:gg /I\J/Igﬁﬂgn|?1|tr|;rnigreecrbclgsl\/|agdzrs]da5?f\%ﬁ%rgztﬂtelon
linear response modeling procedure for treating ET reactions gjectronic Free Energy Gap,E, — E;, and Diabatic
in the condensed phase. Coupling, A?

The purpose of this paper is to study the effect of an

. . . J wj A no. of basis functions
anharmonic environment on ET reactions. A number of workers
have studied the effect of anharmonicities in the intramolecular 1 2100 250 8
- 2 650 250 12
degrees of freedom on the ET reactfn*® however, so far, 3 400 250 16
there have been only very few attempts to describe the quantums4 150 250 24
dynamics of reactions in an anharmonic environment based on Eo—E;=0 A =250

path Integreﬂ“*“s_and_§em|c|aSS|C%?| methods. Here, we dem- aAll quantities are given in crt. The last column specifes the

onstrate the applicability of the ML-MCTDH method to simulate  number of primitive basis functions used in our simulations.

the quantum dynamics in such systems. The ML-MCTDH

appears to be ideally suited to study such systems because, in

contrast to the path integral method, the bath degrees of freedonn this paper, the spinboson model is used only for comparison

are treated explicitly, and thus, the anharmonicity of the bath With results for a more general anharmonic model (see below).

degrees of freedom makes little difference to the calculation. In the calculation presented below, we will consider models
The paper is organized as follows: Section Il outlines the that include both a discrete set of intramolecular modes (inner

model employed in this paper, followed by a brief summary of sphere) and a continuous distribution of environment modes

the ML-MCTDH theory and some details of the calculation in (outer sphere). The coupling of the intramolecular modes is

Section IIl. Section IV presents the results of the dynamical usually specified by the reorganization energy= 2¢j%/wj?.

simulations and discusses the connection to the linear responsén some of the examples discussed below, four intramolecular

model. Finally, Section V concludes. modes are included. Their frequencies and reorganization
energies are given in Table 1.
Il. Model The effect of the outer sphere bath is specified by its spectral
itv19
To study ET reactions in a condensed-phase environment,dens'ty’
we consider the generic Hamiltonian 2
T |
Jw) ==Y —d(w — w, 2.5
H=H,+H,+ H (2.1) (@) lew_ ( ) (2.5)

J

where Hs and Hy denote the Hamiltonian of the system and |n this paper, we employ a bimodal form,
environment (the “bath”), respectively, akids their interaction.
In this paper, we employ a generalized spboson model in Jg(w) = Ig(@) + Ip(w) (2.6)
which the corresponding terms are given by
with a Gaussian part accounting for the ultrafast inertial decay,
H, = [,y + 9,00, + Ao, (2.22)

w
1, Jg(w) = \/:—r%e*[w’(ztvs)]z (2.7a)

H, = z Epj + Vi(q) (2.2b) G

]
and a Debye part describing the slower diffusive decay,
Hy=o0 W(q; 2.2c

sh ZJZ J(QJ) ( ) , B AD wwp -
p(w) = ?m (2.7b)

Here, |y10and [y,.0denote the donor and acceptor state of the

ET reaction, respectively, ang ando, are Pauli matrices. The total reorganization energy of the ET reaction is given by

_ A = Ap + Zc. In the examples below, we use the following set
0, = [, p,| + |, | (2.32) of parameters:igc = 250 cnT?, wg = 200 cnT?, Ap = 250
—1 = -1
- _ 2.3p cm i andwp =20 cm~ L
02 = 11| = [yollpd ( ) The solvent spectral density of eq 2.6 can be discretized to

. . the form of eq 2.5 via the relation
In all examples studied below, the electronic parameters for the q

system Hamiltonian ar&; = E, = 0 (corresponding to a 5 Jy(w)
symmetric, for example, self-exchange, ET reaction) And Cj2 = —w, B (2.8a)
250 cnrl. 7 p(w;)
Most quantum dynamical studies of ET processes in the ) ) ) o
condensed phase have been based on the-bpson model. ~ Wherep(w) is a density of frequencies satisfying
The spirn-boson model corresponds to a harmonic approxima- o
tion for Vj(qg;) and a linear coupling term iwj(q;). j; "dwp(w) =j, j=1,...,N (2.8b)
122 with N denoting the number of solvent modes in the simulation.
Vi(q) = Zw:°g; 2.4
(@) 2“4 (2.42) The precise functional form gf(w) does not affect the final
answer if a sufficient number of modes are included. In this
Wi(qg) = ¢ (2.4b)

paper, we employ a simple discretization scheme in which the
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frequencies are equally spaced. The density of frequencies islll. Dynamical Method

thus given by To simulate the quantum dynamics of the ET systems

N introduced above, we use the multilayer (ML) formulatiar
o(w) = — (2.9) the multiconfiguration time-dependent Hartree (MCTDH)
@m method—* in combination with an importance sampling scheme
to describe the thermal initial condition in the observable (eq

with oy, = 800 cnT* the highest frequency considered. Although  2.11). The method as well as applications to different reactions
this discretization scheme is not as efficient as what we havein the condensed phase have been described in detail previ-
used previously;-2!2%it is more convenient for the purpose of  ously53250.51Here, we only briefly introduce the general idea
comparing to results obtained with an anharmonic environment. and give some details specific to the application in this
For the examples presented in Seciton IV, we find that 50  work.
150 bath modes are adequate to represent the bath continuum A Multilayer Multiconfiguration Time-Dependent Har-

over the time scale of interest. tree Theory. The ML-MCTDH method is a variational
To study the effect of anharmonicity on the ET reaction, we approach for the description of quantum dynamics in systems
consider a polynomial expansion of the bath poteiiaj}) and with many degrees of freedom. It extends the original MCTDH
the electronie-nuclear couplingWi(q)) along each nuclear  method—* for applications to significantly larger systems. In
coordinateg; up to the quartic order. the original (single-layer) MCTDH method, the overall wave
function is expanded in terms of time-dependent configura-

A 15>

B D
Vi(g) = iszqJA + fle5/2qj'3 +Z0fe7+ Eijs/ij
(2.10a) |W(t) 0= Z APt = z z Z Ay (O X

1 )2 M

tions.

E F, G,
W(@) = 50,79" + 500 + 5 0q° + g L
(2.10b) ﬂ 4O (3.1)

The parameters;, ¢; of the original spir-boson model are

determined from the spectral density as described above. In
addition, in this model, there are six dimensionless parameters
for each nuclear degree of freedofy, B, Dj, Ej, Fj, andG;, to

describe anharmonic corrections to the standard harmonic bat
model in eq 2.4. It is noted that the polynomial expansion in
eq 2.10 neglects mode-mixing terms. The effect of such terms {0 P& orthonormal.

(e.g., Dushinski rotatidf) on the dynamics will be the subject In contrast to the original MCTDH method, in which the SP
of future work. functions are represented by time-independent basis functions,

Here, |¢}f((t)Dis the “single-particle” (SP) function for thkth

SP degree of freedom, aiidenotes the number of SP degrees
of freedom. Each SP group usually contains several (Cartesian)
rdegrees of freedom in our calculation, and for convenience, the
SP functions within the same SP degree of freedom are chosen

For the intramolecular modes, there is no fundamental K Knjev K
restriction in choosing the anharmonicity parameters; they can lpn() = Z B()|u (3.2)
be determined by fitting the potential energy surface along each

G. For the infinite_number of quter-sphere sc_)lvent modes, the ML-MCTDH method employs dynamiccontraction of the
however, the Hamiltonian form in eq 2.2 requires that each basis functions that constitute the SP functions. To this end, a

coupling term in eq 2.10 follow a proper scaling versus the time-dependennulticonfigurational expansion of the SP func-
number of bath modedy, to ensure that the correct thermo- tions is used

dynamic limit is reached in the continuous limft*® As
discussed in ref 49, the dimensionless parameterg{q;) k Kngay s K
generally need to scale as\lif all the terms are to be retained (D= Z B OO=

in eq 2.10. In this case, however, the bath has no direct K
dynamical influence on the system, and the effect of the gkn ka

: . > o X o (t (H)O(3.3
environment is purely static, similar to static disorder. To discuss Z Z g(k) '1'2""Q(k)() !:l |U'q (H0(3-3)

more interesting dynamics, we delete all odd power term4 in

(ie.,B; = Dj = 0) and all even power terms % (i.e.,E;=G; that is, the basic strategy of MCTDH is adopted to treat each
= 0). To reach the thermodynamic limit in the thus obtained sp function. HereQ(K) denotes the number of level two (L2)-
model, it is required that the remaining coupling termsAin SP degrees of freedom in tkth level one (L1)-SP group, and
scale as /N.4849This requirement is naturally satisfied fqr 1Wt)0is the L2-SP function for theth L2-SP degree of
due to the definition of the spectral density (2.5) in the harmonic freedom. Employing two dynamical layers, the expansion of
limit. For the cubic terms iV, it is required thaf5jin eq 210 the overall wave function can thus be written in the form
scale as = F/v/N, whereF is a constant.

The observable of interest to study the dynamics of ET |W(t)[= Z Z Z Az D X

reactions is the time-dependent population of the donor state, T T I
given by M QK
Ki kq
. » " » !] > > > B, O |j||u|q 00 (3.4)
PO) = ——prtrle " hyapale™ il ™] U =
rfe
[ : (2.12) The extension to more dynamical layers is obvious. In the

calculation considered below, two dynamical layers are em-
Here, = 1/kgT, and we use atomic units (whelie= 1). ployed.
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The equations of motion within the ML-MCTDH approach 1 T .
can be obtained from the Dira&renkel variational principlé.
For two layers, they are given by 081 T
||1P(t)|11 coefficients — H(t)|qj(t)[j (3.5a) g 0.61 1 I/,iﬁ\f‘» P N N ____
O coeficiens= [1 — PO O] HHO U 1O oat \Ji T -

(3.5b) v

kg _ 025 100 300 300
3} (®) L3 coefficients— Time (fs)

_ pka ~kary1 1 ) ,,kd
[1 = PO ()] EV((t)Iﬁ [ H(HL(3.5¢) Figure 1. Time-dependent population of the donor electronic state

. . .. for the generalized spirboson model, eq 2.2, & = 300 K. The
where the mean-field operators, reduced densities, and projectiotharameters for the electronic states and the bath are given in Section
operators are defined in ref 5. The equations of motion for 1. The anharmonic parameters in eq 2.10 are defined as pure harmonic
additional layers are again obvious extensions of eq 3.5. Thebath (); Aj= 0.2 for all bath modes and zero for all other parameters
inclusion of several dynamically optimized layers in the ML- (——+); F; = 0.2+/N for all bath modes and zero for all other
MCTDH method provides more flexibility in the variational — Pparameters (- - -).
functional, which significantly advances the capabilities of
performing wave packet propagations in complex system. This 20—40 for the L1-SP group and @8 for the L2-SP groups.
has been demonstrated by several applications to quantumComparably, this number is smaller for the solvent SP groups:
dynamics in the condensed phase, including many degrees 08—10 for the L1-SP groups and- for the L2-SP groups. The
freedomp:32-34,50,52,53 resulting total configurational space is 26020 000 for the

B. Details of the Calculation. The ML-MCTDH theory first layer and 606-15 000 for each second layer, where the
outlined above is applied to simulating quantum dynamics of larger configuration space is required when strongly coupled
the model Hamiltonian in eq 2.2, where both harmonic and intramolecular modes are included in the model. The CPU cost
anharmonic model potentials have been treated. The results aréor one wave function thus varies significantly, ranging from a
obtained with two upper dynamic layers and one deeper staticfew minutes to as many as 20 h on a 2.8 GHz Pentium 4 PC
layer, which we generally refer to as the two-layer version of (the more expensive ones are used mainly to ensure that full
the ML-MCTDH. To evaluate the trace in eq 2.11, a Monte convergence is reached.) Depending on the temperature, up to
Carlo average is carried out employing an importance sampling & few hundred Monte Carlo samples are sufficient to achieve
technique according to the weighting function provided by the statistical convergence when intramolecular modes are included
Boltzmann operatot4.22 Thereby, depending on the specific in the model and a few thousand samples for models without
parameters, hundreds to thousands of statistical samples aréhem.
required to achieve convergence.

For the examples considered below, one level 1 (L1) SP group IV. Results
is assigned for the intramolecular modes (if they are present) ) ) ) )
and another four L1-SP groups are assigned for the solvent We first study the |_nf|uence of an anh_armonlc environment
modes. The number of level 2 (L2) SP groups varies between ©N th_e ET reac_tlon using model'_s without intramolecular modes.
two and six for different L1-SP groups. In the third static layer, AS discussed in Section Il, we include even power terms; of
up to six Cartesian degrees of freedom are contained in each@nd odd power terms &ff in eq 2.10. Furthermore, we require
SP group. The basis functions for the sphoson model of eq  that the coupling constants M} (F;, ¢j) scale as ¥N to
2.4 are naturally chosen as eigenfunctions of each harmonicensure a proper thermodynamic limit. Figure 1 shows the time-
mode. For the anharmonic model in eq 2.10, they are chosendependent population of the donor sté&g), for the parameters
as eigenfunctions of?2 + V, for each quartic degree of given in Section Il. Three cases are considered: the standard
freedom. This is done by using primitive basis functions of spin—boson model with a harmonic bath and linear electronic-
harmonic oscillator eigenfunctions to exprégsand W, and nuclear coupling (solid line) and two generalized sgwson
diagonalizingp?/2 + V; to obtain its eigenfunctions. A corre- models with an additional anharmonic term in eitig(dashed-
sponding transformation is then made to exph&isi terms of dotted line) orW (dashed line). For the parameter regime
this basis set. Afterward, a sufficient number of basis functions considered here, the ET dynamics is characterized by pro-
is employed for each degree of freedom based on both thenounced electronic coherence effects, which are quenched for
temperature (such that the highest state has negligible Boltzmanrlonger times due to the interaction with the environment.
weighting) and the coupling strength to the electronic states. Compared with the harmonic bath model (solid line in Figure
This number is listed in Table 1 for the intramolecular modes. 1), the amplitude of the electronic oscillations increases when
For outer-sphere solvent modes, it varies from 5 to 130, including the quartic term of the bath potential while retaining
depending on the frequency and the anharmonicity of the modes,only the linear electronic-nuclear coupling (dashed-dotted line).
although a smaller number of basis functions may also give This indicates that the quartic anharmonicity of the bath reduces
the correct result. Finally, the basis functions of the static layer the effective electronic-nuclear coupling. This can be rational-
are adiabatically contracted, as done previoB&f22 ized by the fact that the energy levels of a quartic oscillator

An important factor to obtain numerically exact results within  have a larger spacing than that of a harmonic oscillator, thus
the ML-MCTDH approach is to use enough time-dependent resulting in an effectively smaller density of states at lower
configurations for each layer. This is achieved by converging energy. On the other hand, the electronic coherence effects are
the number of SP functions for each SP degree of freedom in quenched when including an additional cubic ternWirwhile
repeated test calculations. For the examples discussed in thigetaining a harmonic bath (dashed line). This is due to the fact
paper, a relatively large number of SP functions for the groups that the additional cubic term increases the effective electronic
of the intramolecular modes is needed to achieve convergencenuclear coupling.
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Figure 2. Time-dependent population of the donor electronic state
for the generalized spirboson model, eq 2.2, & = 300 K. The
anharmonic parameters in eq 2.10 are definef; as0.05A/N for all
bath modes and zero for all other parameters exéept 0.0 (—),
A=02(—),andA =05 (- -).
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Figure 3. Time-dependent population of the donor electronic state
for the generalized spinboson model, eq 2.2, & = 300 K. The
anharmonic parameters in eq 2.10 are defined;as 0.2 for all bath

modes and zero for all other parameters exégpt 0.05A/N =) F
= 0.1~/N (—-—+), andF; = 0.2hW/N (- —).

The two anharmonic models considered above differ from
the standard harmonic bath spiboson model only by either
an additional quartic term or an additional cubic coupling. The

general trend observed remains qualitatively the same, even

when more complicated anharmonic models are used. This is
demonstrated in Figures 2 and 3, which show results of the
generalized spirboson model in which anharmonic terms are
included in bothv; andW. As illustrated in Figure 2, increasing
the quartic anharmonic strength\fresults in more pronounced
electronic coherence iR(t). The opposite trend is found for
increasing the cubic anharmonic strengthVify as shown in
Figure 3. These findings are consistent with those of simpler
models in Figure 1.

At a particular temperature, the models of ET reactions in
an anharmonic bath discussed above can, in principle, be
mapped exactly to the spitboson model with a fictitious
harmonic bath. This is achieved by Fourier transforming the
force—force autocorrelation function of the anharmonic bath,

1 1 .
Cﬁ(t) = ftr[efﬂHb Z ij(qj)elet z ij(qj)elebt]
tr[e ﬁHb] J T (4 1)

to give an effective, temperature-dependent spectral déhsity

I, f) =2 tan)'(ﬁ—g)) [ dt REC,(D)] cost) (4.2)

It is noted that for the ET model considered here, the ferce
force autocorrelation function corresponds to the energy-gap
correlation function.

Figure 4 shows the effective spectral densify(w, ) for
different anharmonicity parameters. The spectral densities
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Figure 4. Effective spectral density obtained from eq 4.2 for the
anharmonic models described in the text. (a) Models that correspond
to Figure 1 at 300 K: original spectral density with the harmonic bath

(=), A = 0.2 for all bath modes and zero for all other parameters

(== F = 0.2K/N for all bath modes and zero for all other
parameters  —). (b) Dependence of the spectral density on the
temperature for the anharmonic paramefgrs 0.2 andF; = 0.2W/N

for all the bath modes and zero otherwise:= 300 K (—-—-), T =
100 K (— =), T = 25 K (-*). For comparison, the original spectral
density with the harmonic bath is also shown)(

depicted in panel (a) correspond to the dynamical results shown
in Figure 1, representing models that include either a quartic
anharmonicity (dashed-dotted line) or a cubic coupling term
(dashed line). The comparison with the spectral density of the
corresponding harmonic spiiboson modelJ(w), eq 2.6 (in
which all anharmonic parameters have been set to zero) reveals
that especially the quartic anharmonicity results in a significantly
altered effective spectral densityer(w, 5). In particular, the
effective spectral density has smaller values than the corre-
sponding harmonic spectral density for low frequencies and
slightly larger values for higher frequencies. This is a conse-
guence of the fact that effective spectral density describes a
bath of quartic oscillators, the energy levels of which are shifted
to higher energies with respect to those of the corresponding
harmonic oscillators. Overall, the effective spectral density
shows that in the model with the quartic bath, the electron
nuclear coupling is significantly smaller, which results in the
more pronounced electronic coherence effects observed in the
dynamical results in Figure 1. The additional cubic coupling
term (without anharmonic potential), on the other hand, results
in an almost frequency-independent, relatively small increase
of the value of the spectral density. This corresponds to a larger
electron-nuclear coupling, which results in a faster quenching
of the electronic coherence, as observed in in the dynamics of
P(t) in Figure 1.

The dependence of the effective spectral density on the
temperature of the anharmonic bath is illustrated in Figure 4b.
It is seen that a higher temperature results in an overall more
structureless effective spectral density. Furthermore, the intensity
of the low-frequency part of the effective spectral density
decreases for higher temperature. The latter result is a conse-
qguence of the fact that for higher temperatures, the occupation
shifts to states with higher energies.



10374 J. Phys. Chem. A, Vol. 111, No. 41, 2007 Wang and Thoss

1 T T T T

0.8

0.6

P(t)
P(t)

0.4

0.2 b

1 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (fs) Time (fs)

Figure 5. Time-dependent population of the donor electronic state Figure 6. Time-dependent population of the donor electronic state
for the generalized spinboson model for which four intramolecular  for the generalized spiboson model for which four intramolecular
modes in Table 1 are included in addition to the outer-sphere bath. modes in Table 1 are included in addition to the outer-sphere bath.
The anharmonic parameters in eq 2.10 are defined; & 0.2 and The anharmonic parameters in eq 2.10 are defined as 0.2 and
F = 0.2W/N for all outer-sphere bath modes. The intramolecular Fi= 0.2W/N for all outer-sphere bath modes afhd=B=Dj=FEF =
modes are harmonic with linear coupling to the electronic states. Three F; = G; = 0.1 for all intramolecular modes in addition to their harmonic
temperatures are shown: 300)( 100 (~-—-), and 25 K & — —). potential and linear electronic-nuclear coupling. Three temperatures are
shown: 300 ¢), 100 (—-—-), and 25 K  —).

The mapping of an anharmonic bath to a fictitious harmonic
bath is possible within linear response theory if the coupling tional coherence irP(t). Furthermore, it also changes the
term W(q) obeys the proper scaling-(/v/N). This scaling is potential energy surface significantly. As a result, the long time
required for extended (nonlocal) nuclear modes to ensure thatlimit for the donor populationP(t), is different from the value
the thermodynamic limit is reached for an infinite number of 0.5. The latter value was obtained for all models considered
nuclear degrees of freedom. However, it is not a necessary@bove, which could be mapped to a sposon model with
requirement that all nuclear degrees of freedom of an ET systemfictitious harmonic bath. For the self-exchange ET reaction (with
in a condensed-phase environment follow this scaling law. An E1= E2=0, corresponding to a symmetric spinoson system)
important example, which will be discussed below, is ET considered here, the spioson model with harmonic bath will
reactions involving strongly coupled anharmonic intramolecular 9ive the limitP(c0) = 1/2. The fact that the present model with
degrees of freedom. Despite the fact that the feffoece anharmonic intramolecular modes does not give this limit is an
autocorrelation function for such systems can still be obtained indication that linear response is not valid and the model cannot
theoretically or experimentally in this situation, a mapping to Pe mapped to a fictitious harmonic bath.

0

the harmonic bath spirboson model may lead to serious errors.  Including anharmonic corrections for the strongly coupled
It is thus crucial to perform dynamical studies with the original intramolecular modes may thus have both thermodynamic and
anharmonic potential functions. dynamic effects on electron-transfer reactions. This is illustrated

We next consider ET models that include the influence of in more detail in Figure 7. Panel (a) demonstrates how the
intramolecular modes (inner sphere), of the derexceptor transient dynamics and the long time value for the population
complex. Figure 5 showB(t) at 100 K for a model with four changes if the anharmonicity of the intramolecular modes is
intramolecular modes, as listed in Table 1. The parameters forincreased systematically. The influence of the sign of the
the electronic states and the outer-sphere bath are the same g&fferent anharmonic potential terms is studied in Figure 7b. In
discussed above. The anharmonic parameters in eq 2.10 ar&ontrast to a purely harmonic spiboson model, in which the
defined ashy = 0.2 andF; = 0.21/N for all outer-sphere bath sign of_the Im_ear coupling parametgras no |anL_1ence on the _
modes, whereas the four intramolecular modes are harmonicdynam'cs’ this IS not the case for models W',th anhar.monlc
with linear electronic-nuclear coupling. The results ) potentials, coupling terms, or both. Here, a different sign of

exhibit, in addition to the electronic coherence effects discussed!le Potential/coupling parameters may change the dynamics
above, oscillations on shorter timescales. These oscillationsdrastically due to the very different potential energy surface.
correspond to the vibrational periods of the four intramolecular V. Concludina Remarks
modes and thus can be classified as vibrational coherence™" 9
effects. The strong coupling strength between the intramolecular In this paper, we have applied the multilayer multiconfigu-
modes and the electronic states results in a weak temperaturgation time-dependent Hartree (ML-MCTDH) theory to inves-
dependence oP(t), which has also been found in previous tigate electron-transfer reactions in the condensed phase em-
studies of electron-transfer reactions in mixed-valence sys- ploying models with anharmonic potential functions. We have
tems>2.54 studied both models that can, in principle, be mapped to aspin
Although the outer-sphere bath modes are anharmonic forboson model with a fictitious harmonic bath and models in
the model studied in Figure 5, this model can be exactly mappedwhich, due to anharmonicity in strongly coupled intramolecular
to the standard harmonic bath spinoson model because the degrees of freedom, such a mapping is not possible. The results
intramolecular modes are harmonic. Figure 6 presents resultsshow the influence of the anharmonicity on the ET dynamics.
for a model in which such a mapping is not possible because Depending on the specific model, it may result in more
all intramolecular modes (and all bath modes) are intrinsically pronounced electronic coherence effects or a quenching of the
anharmonic. Since there is no fundamental restriction for electronic oscillation. For models that cannot be represented
selecting the anharmonic parameters of the intramolecular by a harmonic bath, the anharmonicity may, furthermore, alter
modes, we choose model paramei§rs Bj=D; =E =F; = the long-time limit of the electronic population significantly and
Gj = 0.1 for the intramolecular modes. All other parameters thus influence the thermodynamics of the reaction.
are kept the same as in Figure 5. It can be seen that, similar to The results presented in this paper demonstrate the capability
what was found for the influence of the anharmonic bath, the of the ML-MCTDH method to accurately describe quantum
anharmonicity in the intramolecular modes reduces the vibra- dynamics in the condensed phase beyond the commonly
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